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Abstract—-This effort, directed at developing a sensor for 
evaluating water quality, is based on electrochemical 
techniques that detect and identify ions in solution. This 
paper discusses the use of Cyclic Voltammetry (CV), 
corrosion measurements, and Anodic Stripping 
Voltammetry (ASV) to measure three marker ions Cu, Fe, 
and Zn using Electronic Tongue 1. Use of genetic 
algorithms are suggested as an approach to facilitate the 
search for optimum measurement conditions. In addition, 
the possibility of changing the physical conditions of the 
sample chamber is discussed as a way of increasing the 
sensor’s apparent sensitivity of and confidence in the 
measurements. 
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1. INTRODUCTION 

This paper extends the work reported at last year’s IEEE 
Aerospace conference where the design principles for the 
fabrication of Etng1 (Electronic Tongue No. 1) [Buehler, 
2001] were discussed. In this effort the capabilities of 
Etng1 are explored using three sets of electrochemical 
measurements including Cyclic Voltammetry (CV) 
[Kissinger, 1996], corrosion measurements [Stansbury, 
2000], and Anodic Stripping Voltammetry (ASV) [Wang, 
2000]. This effort is an outgrowth of the 25-cm3 
electrochemical cell developed for the MECA (Mars 
Environmental Compatibility Assessment) project [West, 
1999] which included 20 prefabricated Ion Selective 
Electrodes, a conductivity sensor, a temperature sensor and 

an oxidation reduction potential sensor. Traditional 
electrochemical sensors are fabricated at the end of a 
pencil-like cylindrical tube. Such sensors cannot be 
configured easily in a multi-sensor array nor can they be 
miniaturized. 
 
This is a joint effort between JPL, Tufts University, and 
ThermoOrion Research, Inc. Its goal is the development of 
a water quality sensor for use on the International Space 
Station Alpha and Martian habitate. The target ions are K+ 
(340 mg/L), Ca2+ (30 mg/L), Mg2+ (50 mg/L) and Cl– (200 
mg/L) which represent some of the NASA Spacecraft 
Maximum Contaminant Levels (MCL) for potable water 
for International Space Station Alpha. 

2. EXPERIMENTAL APPARATUS 

The working electrodes (WE) and reference electrodes 
(RE) used in this effort were fabricated on ceramic 
substrates as seen in Fig. 1. 
 

THERMOMETER

WERE

CELL#1

 
Figure 1.  Top side of a 4.5-cm diameter ceramic substrate 
showing the working (WE) and reference (RE) electrodes 
arranged on a 3 × 3 array and a four-terminal thermometer. 
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The electrodes are arrayed in a 3 × 3 matrix. Each cell has 
one WE and RE electrode. The thermometer is formed by 
screen printing RuO2 and is used to monitor the 
temperature of the solution. Two types of electrodes were 
screen printed onto the 1-mm thick 96%-pure alumina 
substrate. The first WE and RE electrodes were fabricated 
using Pd(12%)Ag(88%) and the second type with Au. 
After screen printing the electrodes were fired in air at 
840°C. The electrodes are accessed using 0.5-mm diameter 
pins mounted on the underside of the substrate. 
 
The substrate is mounted in the apparatus shown in Fig. 2a. 
The top of the chamber contains an array of nine Au/Ni 
plated Cu auxiliary electrodes (AE) located above the WEs. 
The distance between the WE and AE is about 2 mm. The 
volume of the chamber is about 1.5 mL. 
 

AE 

 
Figure 2a. Etng1 experimental apparatus showing the 
sample chamber exposed and the nine AEs located in the 
cap of the chamber. 
 

MANIFOLD

 
Figure 2b. Etng1 showing the eight-port manifold mounted 
on the lower fluidics board. 
 
A further view of the apparatus is seen in Fig. 2b that 
shows the sample chamber mounted on an electronics 
board which is mounted above a fluidics board. The 
fluidics board includes an eight-port a manifold. Thus, 

eight reagents can be introduced into the chamber either 
one at a time or in mixtures by controlling the valves (not 
shown) located above the manifold. 
 
The final view of the apparatus, shown in Fig. 2c, depicts 
the miniature 50-µL pump. The pump is operated at 3 Hz 
and so is capable of filling the 1.5 mL chamber in 10 s. 
 

PUMP

 
Figure 2c. Etng1 showing the 50-µL pump mounted on the 
lower fluidics board. 

3. ELECTRONICS 

Various solutions were measured using the three electrode 
potentiostat shown in Fig. 3 [Kissinger, 1996]. The 
electronics forces a voltage between the WE and RE to be 
at voltage determined by DAC0. This is achieved using the 
operational amplifier U2 to force a current through AE so 
that the commanded voltage between the WE and RE is 
achieved. The current through the addressed cell is 
determined from the voltage drop across R0. The main 
current flow is indicated for Cell#2 by the red (heavy) line 
in Fig. 3. The voltage between WE and RE is VWR and the 
voltage between the AE and RE is VAR. 

4. EXPERIMENTS 

The apparatus was characterized using four 0.1% by weight 
salt solutions of CuSO4, ZnSO4, and Fe2SO4. Prior to 
exposure to these salts, the chamber was filled with 
deionized water and the electrodes biased using our 
standard bias profile described below and this routine 
preconditions the electrodes. The solutions were 
characterized using CV measurements with a triangle wave 
voltage with a slope of ±0.1 V/s. One hundred stepped 
voltages formed the triangle wave that varied from +1.0 V 
to –1.2 V and back to +1.0 V. Two cycles were measured 
to demonstrate repeatability. Then ASV behavior was 
measured using a positive going voltage ramp where the 
ramp has 50 steps and a slope of +0.1 V/s. The linear ramp 
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was varied from –1.2 V to +1.0 V. Prior to the onset of this 
ramp the potential was held at –1.2 V for a deposition time 
of Tdep. This allowed the reduction of cations on the WE. 
During the ramp the cations are reoxidized at a potential 

characteristic of the cation. Again two traces were 
measured to demonstrate repeatability. The ASV results are 
used to relate the potential observed using our electrodes to 
results obtained using SHE (Standard Hydrogen Electrode). 
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Figure 3.  Etng1 potentiostat circuitry. Resistor values are in ohms. Ron is the MUX on resistance. 

 
The results are shown in Figs. 5 to 7 and are organized as 
follows: CuSO4 is shown in Fig. 4, ZnSO4 in Fig. 5, and 
Fe2SO4 in Fig.6. Results for Au electrodes are shown in a, 
b, and c and results for PdAg are shown in d, e, and f. CV 
results are shown in a and d, Tafel results are shown in b 
and e, and ASV results are shown in c and f. 
 
In the CV test results the open data (red curve) are VWR 
results and the solid data (blue curve) are VAR results. The 
CV curves provide insight into the nature of the chemical 
and electrochemical process occurring in the chamber 
[Kissinger, 1996]. During the negative going sweep (left to 
right) species in solution are reduced. During the positive 
going sweep (right to left) species in solution are oxidized. 
Species identification, however, is determined in 
subsequent analyses, in particular with ASV.  
 
The CV data are replotted as Tafel curves. The open data 
(red curves) are oxidation results measured at the WE and 
the solid data (blue curve) are reduction results measured at 
the AE. The analysis of the corrosion data includes the 
intersection of the two curves which defines the corrosion 
potential, Ecorr, and the corrosion current, Icorr [Stansbury, 
2000]. In addition the voltages at zero current are 
designated as VAR(0) determined at the AE and VWR(0) 
determined at the WE.  
 
ASV measurements are used to identify metals in solution. 
These measurements start at a negative potential of VWR = 
- 1.2 V where they are held for a deposition time, Tdep and 

terminate at 1.0 V. The curves reveal anodic (negative 
going) peaks characteristic of ions being reoxidized from 
the WE into solution. In this study our goal is to detect 
marker ions in solution in order to characterize the 
response of the quasi Ag RE and relate the measured 
potentials to SHE (Standard Hydrogen Electrode) 
potentials. The ultimate goal is to use the ASV technique to 
detect very low levels (ppb [Wang2000]) of contaminates 
in water.  

5. EXPERIMENTAL RESULTS 

General observations of the results seen in Figs. 4 to 6 are 
as follows. The results obtained using Au or PdAg WE and 
RE are qualitatively the same. Also the repeatability of the 
two traces are quite good in that the second trace overlays 
the first trace. One must look closely to see differences. 
 
The ASV response for the PdAg electrodes are shown in 
Figs. 4f, 5f, and 6f. The peak voltages are plotted in Fig. 7 
against the V(SHE), Standard Hydrogen Electrode. The 
relationship between them is: V(PdAg) = V(SHE) –0.18. 
Also shown are results from the Au electrodes taken from 
Fig. 4c, 5c, and 6c. The Au electrodes do not have a 
straight-line relationship as does the PdAg electrodes. For 
comparison purposes, results are also shown in Fig. 7 for 
data taken at Tufts [Kovacs, 1995]: these results were 
measured using a Ag/AgCl RE and a ramp square wave  
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Figure 4a. CV CuSO4 response for Au WE and RE. 
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Figure 4c. ASV CuSO4 response at a Au WE for Tdep = 5 s.  
A negative going peak occurs at VWR = 0.1V. 
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Figure 5c. ASV ZnSO4 response at a Au WE for Tdep = 5 s. 
A negative going peak occurs at VWR = -1.12V. 
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-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.01 0.1 1 10 100 1000
CURRENT, IR6(uA)

VO
LT

A
G

E,
 V

W
R

(-V
R

7)
, V

A
R

(V
R

52
) (

V)

1stVWR(Ox) 11103114 Ecorr(V) = -0.383
CellNo=2 S(V/s)=0.10 VWR0(V) = -0.902
1stVAR(Red) Icorr(uA) = -12.685
(0.1%) FeSO4 VAR0(V) = 0.125

23Au1A30  
Figure 6b. Tafel FeSO4 response for Au WE and RE. 

 

-1.5-1-0.500.51
VOLTAGE, VWR(-VR7) (V)

-20

-15

-10

-5

0

5

10

15

20

C
U

R
R

EN
T,

 IR
6(

uA
)

1st 1stVWR CellNo=2 S(V/s)=0.10 Tdep(s)=5
2nd (0.1%) FeSO4

23Au1A30  
Figure 6c. ASV FeSO4 response at a Au WE for Tdep = 5 s. 
A negative going peak occurs at VWR = -0.35. 
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exciting signal; whereas, the results from this investigation 
used a quasi PdAg RE and a ramp step exciting signal. 
 
All of the CV curves, seen in Figs. 4 to 6 have a positive 
going reduction current peak that occurs between –0.4 and 
–0.7 V. The common compound between the three 
solutions is the sulfate ion. Thus, the reduction peak is 
most-likely due to the sulfate reaction: 
 

SO4
2- + 4H+ + 2e = H2SO3 + H2O 

 
where E° = +0.172 V(SHE) = -0.006 V(PdAg). The 
negative going oxidation current peak, seen in Figs. 5a, 5d, 
6a, and 6c is attributed to the reoxidation of the sulfate ion 
in the case of ZnSO4 and the FeSO4. For the case of the 
CuSO4, the negative going response, seen in Figs. 4a and 
4d, is due to both the oxidation of Cu reduced onto the WE 
during the negative bias portion of the CV curve and 
sulfate ion reduction.  There is addition structure in the 
ZnSO4 CV curve shown in Fig. 5a that is unexplained at 
this time. 
 
The Tafel curves are a replot of the CV curves. Tafel 
curves are traditionally used to characterize the effects of 
corrosion on the WE. In these experiments the WE is either 
Au or PdAg where the E° is +0.8 V(SHE) for Ag or +1.5 
V(SHE) for Au. According to the Nernst relationship, these 
electrodes will oxidize (corrode) only when VWR is close 
to or above the E° potential. Since the VWR(0) is less than 
zero volts, the shape of the oxidation curves (open red 
symbol) can not be attributed to the direct oxidation or 
dissolution of Au and PdAg into solution. 
 
The Tafel oxidation curves (open red symbol) are 
explained by the same mechanism used to explain the 
oxidation portion of the CV curves. That is, the Tafel 
oxidation curves are due to the oxidation of the sulfate ion 
in the case of the ZnSO4 and FeSO4 electrolytes. For the 
case of the CuSO4 electrolyte the oxidation curve is due to 
both the oxidation of the sulfate ion and the oxidation of 
the Cu reduced on to the WE during the negative voltage 
portion of the CV curve. 
 
The Tafel reduction curves (closed black symbol) are most 
likely due to hydrogen reduction at the AE. Hydrogen 
generation produces the flat portion of the curve at low 
currents.  At higher currents, the steep drop in the curve 
with voltage is due to diffusion-limited hydrogen evolution 
at the AE. 
 
The Tafel curves are usually measured using very slow 
ramp voltages where currents in the cell reach a steady 
state value. In this experiment the exciting triangle wave 
had a slope of 0.1 V/s. This slope is fast enough to produce 
a CV curve with hysteresis which indicates that the cell has 
not reached equilibrium. Thus the Tafel curves shown here 

are dynamic and not steady state measurements. Thus, 
these Tafel curves provide dynamic values for Icorr and 
Ecorr. 
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Figure 7. Response of Etng1 ASV peaks versus the SHE 
(standard hydrogen electrode) potential. Also shown are the 
ASV peaks reported by [Kovacs, 1995].  

6. SENSOR CONTROL AND PATTERN MATCHING  

These measurements have a large parameter space. For 
instance, the exciting signal, VWR, has a certain span (1.0 
to –1.2 V), a sweep rate (0.1 V/s), waveform (triangle wave 
formed using steps versus pulses) and deposition time, Tdep. 
Likewise, the measured signals have a span and gain. The 
measurement conditions vary depending on the ion in 
solution and its concentration. In addition the chamber 
environment can be altered by changing temperature, 
adding oxygen (aerating) or nitrogen (deaerating), or by 
changing pH or adding complexing agents. Finally, the 
condition of the electrode surfaces, which can change with 
use, also influences the measurements. All of these factors 
contribute to the multi-parameter measurement space. For 
these reasons, the use of computer searching techniques is 
seen as essential to speeding progress during the 
development cycle, facilitating the search for optimum 
measurement conditions and increasing the apparent 
sensitivity and confidence in the measurements. 
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The approach to detecting contaminants in water is 
depicted in Figure 8. It is based on a Genetic Algorithm 
(GA) that has two purposes: (1) to optimize the pattern 
matching algorithm based on chemometric techniques and 
the immune system and (2) to design and select the optimal 
experimental parameters that control the conditions in the 
sample chamber. The genetic algorithm is used because it 
useful in high-dimensional search spaces and makes fewer 
assumptions about the search space than strong 
optimization method like gradient search. GA’s use 
concepts gleaned from Darwin's theory of evolution by 
natural selection and also from the mechanisms involved in 
the alteration and transfer of genetic information to 
individuals in a population [Goldberg, 1989]. GA has been 
used by the Evolvable Hardware group at JPL for on-chip 
analog circuit optimization [Stoica, 2001], self-repaired 
circuit [Keymeulen, 2000] and optimal in-situ signal 
conditioning [Keymeulen, 2001]. 
 
Consider our immune system as functioning like a pattern 
recognition mechanism and the genetic algorithm as an 
investigation mechanism to search for impurities in water. 
Our immune system protects us from an extraordinary large 
variety of bacteria, viruses, and other pathogenic 
organisms. It also constantly surveys the body for the 
presence of abnormal cells, such as tumor cells and virally 
infected cells and destroys such cells when they are found. 
To perform these tasks the immune system must be capable 
of distinguishing good cells and molecules, which it should 
not be destroyed, from foreign cells and molecules 
(antigens), which should be destroyed. From an 
information-processing perspective, recognizing an almost 
limitless number of foreign cells and molecules, and 
distinguishing these from the good ones is a formidable 
task. 
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Figure 8. Sensor control and pattern matching using genetic 
algorithm. 
 
In this effort models will mimic the pattern recognition 
process and learning that takes place in the immune system. 
Models have been developed and applied to the detection 
of computer viruses [Forrest, 1997] and novelty detection 
in time series data [Dasgupta, 1999]. There the virus must 
be detected and patterns recognized in unknown computer 
environments. We will apply the same strategy, as well as 
chemometric techniques, in our system to learn the 

signatures of known impurities in water and be able to 
differentiate from unknown impurities. 
 
The genetic algorithm is also used to determine the optimal 
parameters that control the conditions found in the sample 
chamber. That is, after the initial signals from the sample 
chamber are detected, the results are analyzed by looking 
for matching patterns. The adaptive control then searches 
using a genetic algorithm for suggestions on how to modify 
the environment of the sample chamber or how to alter the 
signals used to measure the sensor. For example, the 
sample chamber environment can be altered by changing 
the temperature, altering the pH, or adding complexing 
reagents. The sensor waveform signals can be altered by 
changing the signal gain or by altering the parameters that 
determine the square-wave sweep parameters.  Thus, the 
first answer can be refined to provide a more informed 
second answer. In this way we hope to be able to 
discriminate between contaminates in the water and 
increase the apparent sensitivity of the sensors. 

7. CONCLUSION 

This paper presented CV, Corrosion (Tafel) and ASV 
results from Etng1 using three marker ions: Cu, Fe, and Zn. 
The results illustrate the complexity of measurement 
conditions that involve: (a) exciting signal, (b) measured 
signal, (c) chamber environment, and (d) ion detected. The 
use of a genetic algorithm is seen as essential to speeding 
progress during the development cycle, facilitating the 
search for optimum measurement conditions and increasing 
the apparent sensitivity of and confidence in the 
measurements.  
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